Estimation of a k-monotone density: limit distribution theory and the Spline connection

نویسندگان

  • Fadoua Balabdaoui
  • Jon Wellner
  • Jon A Wellner
چکیده

We study the asymptotic behavior of the Maximum Likelihood and Least Squares Estimators of a k-monotone density g0 at a fixed point x0 when k > 2. We find that the j th derivative of the estimators at x0 converges at the rate n−(k−j)/(2k+1) for j = 0, . . . , k − 1. The limiting distribution depends on an almost surely uniquely defined stochastic process Hk that stays above (below) the k-fold integral of Brownian motion plus a deterministic drift when k is even (odd). Both the MLE and LSE are known to be splines of degree k − 1 with simple knots. Establishing the order of the random gap τ+ n − τ− n , where τ± n denote two successive knots, is a key ingredient of the proof of the main results. We show that this “gap problem” can be solved if a conjecture about the upper bound on the error in a particular Hermite interpolation via odd-degree splines holds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of a K − Monotone Density , Part 4 : Limit Distribution Theory and the Spline Connection

We study the asymptotic behavior of the Maximum Likelihood and Least Squares estimators of a k-monotone density g0 at a fixed point x0 when k > 2. In Balabdaoui and Wellner (2004a), it was proved that both estimators exist and are splines of degree k− 1 with simple knots. These knots, which are also the jump points of the (k − 1)-st derivative of the estimators, cluster around a point x0 > 0 un...

متن کامل

Estimation of a k−monotone density, part 3: limiting Gaussian versions of the problem; invelopes and envelopes

Let k be a positive integer. The limiting distribution of the nonparametric maximum likelihood estimator of a k−monotone density is given in terms of a smooth stochastic process Hk described as follows: (i) Hk is everywhere above (or below) Yk, the k− 1 fold integral of two-sided standard Brownian motion plus (k!/(2k)!)t2k when k is even (or odd). (ii) H(2k−2) k is convex. (iii) Hk touches Yk a...

متن کامل

A general spline representation for nonparametric and semiparametric density estimates using diffeomorphisms

A theorem of McCann [15] shows that for any two absolutely continuous probability measures on Rd there exists a monotone transformation sending one probability measure to the other. A consequence of this theorem, relevant to statistics, is that density estimation can be recast in terms of transformations. In particular, one can fix any absolutely continuous probability measure, call it P, and t...

متن کامل

Estimation of a k-monotone density, part 2: algorithms for computation and numerical results

The iterative (2k − 1)−spline algorithm is an extension of the iterative cubic spline algorithm developed and used by Groeneboom, Jongbloed, and Wellner (2001b) to compute the Least Squares Estimator (LSE) of a nonincreasing and convex density on (0,∞), and to find an approximation of the “invelope” of the integrated two-sided Brownian motion+t4 that is involved in the limiting distribution of ...

متن کامل

A Two Stage k-Monotone B-Spline Regression Estimator: Uniform Lipschitz Property and Optimal Convergence Rate

This paper considers k-monotone estimation and the related asymptotic performance analysis over a suitable Hölder class for general k. A novel two stage k-monotone B-spline estimator is proposed: in the first stage, an unconstrained estimator with optimal asymptotic performance is considered; in the second stage, a k-monotone B-spline estimator is constructed by projecting the unconstrained est...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006